Photoselected electron transfer pathways in DNA photolyase.

نویسندگان

  • Tatiana R Prytkova
  • David N Beratan
  • Spiros S Skourtis
چکیده

Cyclobutane dimer photolyases are proteins that bind to UV-damaged DNA containing cyclobutane pyrimidine dimer lesions. They repair these lesions by photo-induced electron transfer. The electron donor cofactor of a photolyase is a two-electron-reduced flavin adenine dinucleotide (FADH(-)). When FADH(-) is photo-excited, it transfers an electron from an excited pi --> pi* singlet state to the pyrimidine dimer lesion of DNA. We compute the lowest excited singlet states of FADH(-) using ab initio (time-dependent density functional theory and time-dependent Hartree-Fock), and semiempirical (INDO/S configuration interaction) methods. The calculations show that the two lowest pi --> pi* singlet states of FADH(-) are localized on the side of the flavin ring that is proximal to the dimer lesion of DNA. For the lowest-energy donor excited state of FADH(-), we compute the conformationally averaged electronic coupling to acceptor states of the thymine dimer. The coupling calculations are performed at the INDO/S level, on donor-acceptor cofactor conformations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. These calculations demonstrate that the localization of the (1)FADH(-)* donor state on the flavin ring enhances the electronic coupling between the flavin and the dimer by permitting shorter electron-transfer pathways to the dimer that have single through-space jumps. Therefore, in photolyase, the photo-excitation itself enhances the electron transfer rate by moving the electron towards the dimer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond Dynamics of DNA Photolyase: Energy Transfer of Antenna Initiation and Electron Transfer of Cofactor Reduction

Photolyase is an enzyme that uses light energy to repair UV-induced DNA damage. We report here our femtosecond studies of the complex dynamics of energy and electron transfer in E. coli photolyase. Under physiological conditions, the excitation energy transfer from the antenna molecule methenyltetrahydrofolate (MTHF) to the fully reduced cofactor flavin (FADH-) occurs in 292 ps, but it takes 19...

متن کامل

Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors.

1. Electron Donor 2223 2. Electron Transfer Path 2225 3. Electron Transfer Mechanism 2226 4. Physiological Relevance 2226 D. Radical Reactions in Photolyase 2226 E. “Dark Function” of Photolyase 2227 F. Regulation of Photolyase 2227 III. (6−4) Photolyase 2228 IV. Cryptochromes 2230 A. Structure 2231 B. Function 2231 1. Circadian Rythm 2231 2. Mammalian Circadian System 2231 3. Cryptochromes and...

متن کامل

Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer.

This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH(-)-containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by t...

متن کامل

Excited-state proton coupled electron transfer between photolyase and the damaged DNA through water wire: a photo-repair mechanism.

The photolyase enzyme absorbs blue light to repair damaged DNA through a cyclic electron transfer reaction. A description of the underlying mechanism has proven to be a challenging issue for both experimental and theoretical studies. In the present work, combined CASPT2//CASSCF/AMBER (QM/MM) calculations have been performed for damaged DNA in photolyase. A proton-coupled electron transfer (PCET...

متن کامل

Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation.

In Escherichia coli photolyase, excitation of the FAD cofactor in its semireduced radical state (FADH*) induces an electron transfer over approximately 15 A from tryptophan W306 to the flavin. It has been suggested that two additional tryptophans are involved in an electron transfer chain FADH* <-- W382 <-- W359 <-- W306. To test this hypothesis, we have mutated W382 into redox inert phenylalan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 3  شماره 

صفحات  -

تاریخ انتشار 2007